Legislative Briefing

The Opportunities for Shared-Use Mobility to Help California Meet its Climate Goals

WHAT IS SHARED-USE MOBILITY?

Shared-use mobility - the shared use of a motor vehicle, bicycle, or other low-speed mode - is an innovative transportation solution that enables users to gain short-term access to transportation modes on an "as-needed" basis

CARSHARING SERVICE MODELS

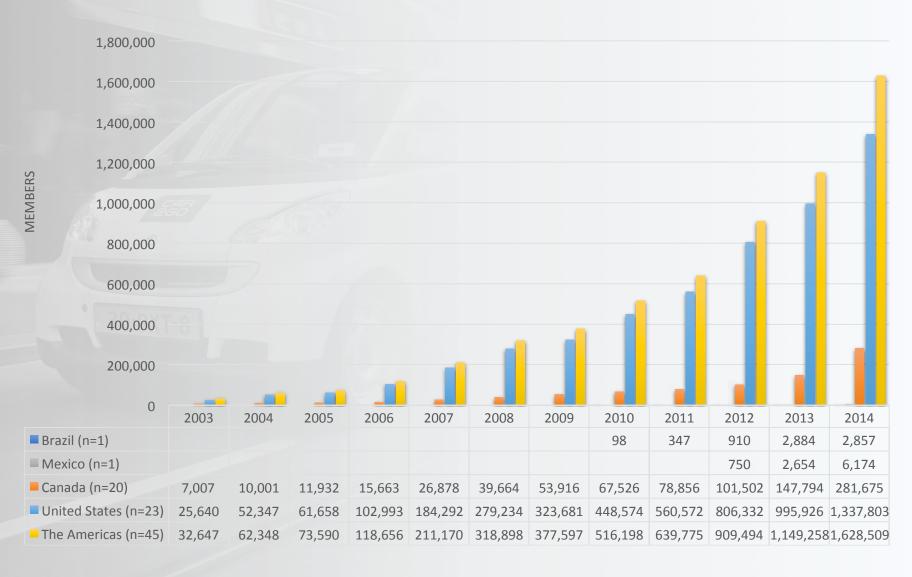
Roundtrip Carsharing:

Round trip, pay by the hour/mile, non-profit and for profit fleet models

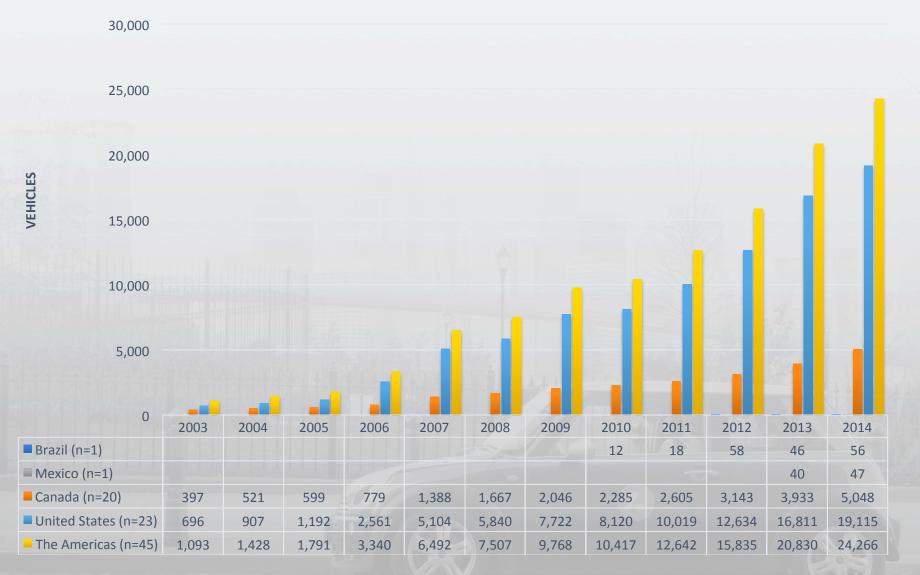
Peer-to-Peer Carsharing:

Shared use of private vehicle typically managed by third party

One-Way Carsharing:


Pay by the minute, point to point, fleet operated, street parking agreements

Fractional Ownership Carsharing:


Individuals sublease or subscribe to a vehicle owned by a third party

(Shaheen, 2015)

CARSHARING MEMBERSHIP GROWTH: AMERICAS

CARSHARING VEHICLE GROWTH: AMERICAS

2008 NORTH AMERICAN CARSHARING SURVEY: KEY FINDINGS

- Between 9 to 13 vehicles removed, including postponed purchase
- 4 to 6 vehicles/carsharing vehicle sold due to carsharing
- 25% sell a vehicle; 25% postpone purchases
- 27 43% VMT/VKT reduction per year, considering vehicles sold and purchases postponed
- More users increased overall public transit and nonmotorized modal use (including bus, rail, walking, and carpooling) than decreased it

2008 NORTH AMERICAN CARSHARING SURVEY: KEY FINDINGS

- Reduction of 0.58-0.84 metric tons of GHG emissions per year for one household (mean observed and full impact)
- 34% 41% reduction of GHG emissions per year for one household.
- \$154 \$435 monthly household savings per U.S. member after joining carsharing

BIKESHARING SERVICE MODELS

Public Bikesharing:

Point to point, pay by the ½ hr, fleet operated, docking stations

Closed Community Bikesharing:

Campuses and closed membership, mainly roundtrip, linking to carsharing

Peer-to-Peer Bikesharing:

Rent or borrow hourly or daily from individuals or bike rental shops

(Shaheen, 2015)

© UC Berkeley, 2015

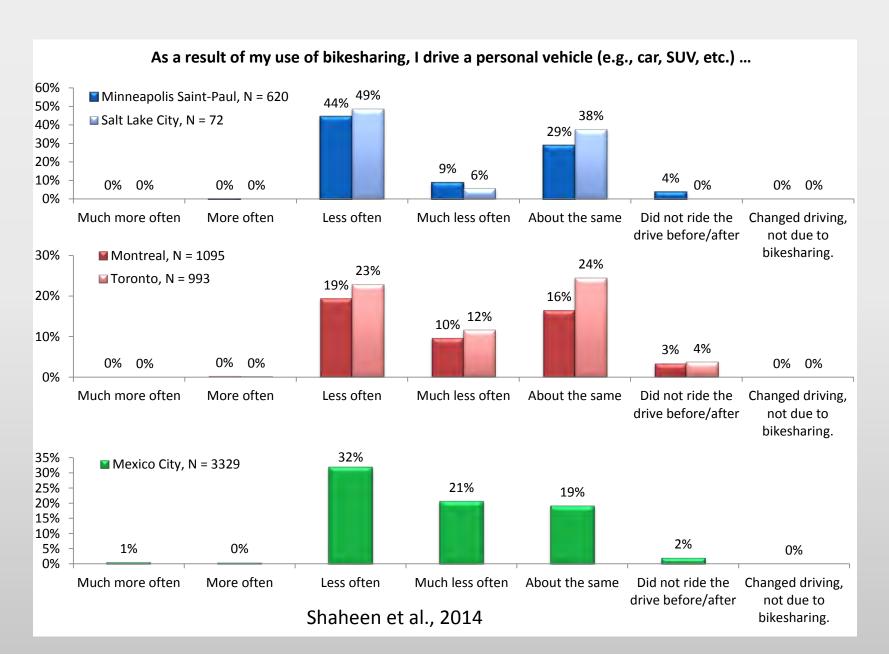
WORLDWIDE AND U.S. BIKESHARING: APRIL 2015

Worldwide: 868 cities with IT-based operating systems

1,016,500 bikes

~811,500 bikes in China (and 256 cities)

U.S.: **72 cities** with IT-based systems (52 programs)


- ~24,700 bikes
- 2,440 stations

In 2015, 21 new programs to begin operating in world: 13 are in China and 8 in US

Source: Russell Meddin, 2015

CHANGE IN DRIVING

BIKESHARING IMPACTS

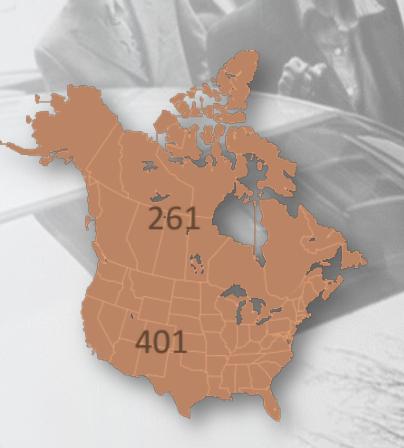
- Studies have shown bikesharing members in larger cities ride the bus less, attributable to reduced cost and faster travel associated with bikesharing
- Rail usage increased in small cities (Minneapolis-St. Paul) and decreased in larger cities (Mexico City, Montreal, and Washington D.C.) – all larger regions with denser rail networks
 - Shifts away from public transit in urban areas are often attributed to faster travel times and cost savings from bikesharing use

RIDESHARING SERVICE MODELS

Carpooling:

Grouping of travelers into a privately owned vehicle, typically for commuting

Vanpooling:


Commuters traveling to/from a job center sharing a ride in a van

Real-Time Ridesharing Services:

Match drivers and passengers, based on destination, through app before the trip starts

CLASSIC RIDESHARING

- Grouping of travelers into common trips by private auto/van (e.g., carpooling and vanpooling)
- Historically, differs from ridesourcing in financial motivation and trip origin/ destination
- 662 ridematching services in the U.S. and Canada (24 span both countries)
 - 612 programs offer carpooling
 - 153 programs offer vanpooling
 - 127 programs offered carpooling and vanpooling

Chan and Shaheen, 2011

BLURRING LINES

- Sharing a ride no longer requires prearrangement or street hails
- Mobile technology and social networking can facilitate finding a ride in real-time (e.g., app-based taxi dispatch or "e-hail")
- Companies testing ridesplitting within ridesourcing: Lyft Line, Sidecar Shared Rides, uberPOOL
- Less distinction among classic ridesharing, ridesourcing, and commercial transportation

FOR-HIRE VEHICLE ACCESS MODELS

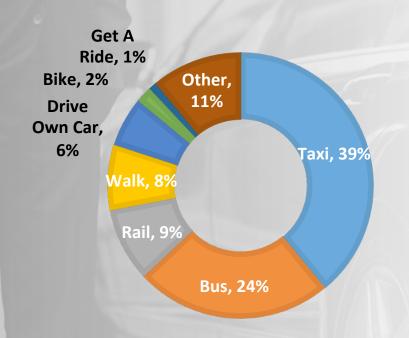
Ridesourcing/TNCs: Service that allows passengers to connect with and pay drivers who use their personal vehicles for trips facilitated through a mobile application

Street Hail:

Hailed with a raised hand or by standing at a taxi stand or specified loading zone

E-Hail:

Hailed by dispatching a for-hire driver using a smartphone application


RIDESOURCING/TNCS

- Platform used to "source" rides from a driver pool
- App-based, on-demand ride services
- Transportation Network Companies (TNCs)
 - Uber (uberX and uberXL)
 - Lyft
 - Shuddle
 - Sidecar
 - Summon
 - Wingz

RIDESOURCING: SOME EARLY UNDERSTANDING

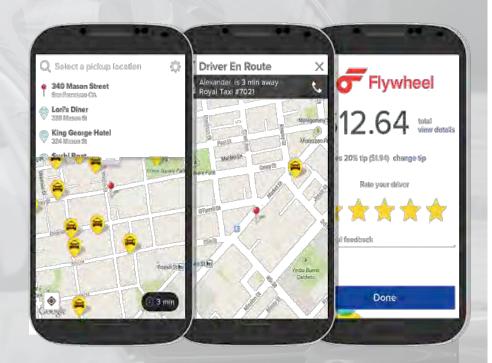
How would you have made this trip if Uber/ Lyft/Sidecar were not available?

92% would have still made this trip

8% induced travel effect

- 33% would have taken public transit (bus or rail)
- 4% named a transit station origin/destination, suggesting some ridesourcing usage to access public transportation
- 20% avoided driving after drinking.

KEY FINDINGS: WAIT TIMES


About how long did you wait for your ride (from the time you made the request to the time the vehicle arrived)?

Percentages of wait times less than or equal to 10 minutes:

Wait Times	Ridesourcing	Taxi (Phone)	Taxi (Street Hail)
M-F 4am-6pm	93%	35%	39%
M-F (6pm-4am)	92%	16%	33%
S-Su	88%	16%	25%

INDUSTRY DEVELOPMENTS: TAXIS

- Taxis starting to compete with TNCs/ ridesourcing
 - E-Hail apps (e.g., Curb, formerly Taxi Magic, Flywheel)
 - Employ peer-to-peer drivers (e.g., Yellow Z)
 - Potential for less regulation from municipalities (e.g., lift limits on taxi permits)

ACKNOWLEDGEMENTS

- Mineta Transportation Institute, San Jose State University
- California Department of Transportation
- Adam Cohen, Elliot Martin, Nelson Chan, and Matt Christensen, TSRC, UC Berkeley
- Special thanks to the worldwide shared-use mobility operators and experts who make our research possible including Timothy Papandreou and Russell Meddin

